Gamma-ray bursts
and
their emission mechanisms

Indrek Vurm

in collaboration with
Andrei M. Beloborodov (Columbia University)
Romain Hascoët (Columbia University)
Christoffer Lundman (Columbia University)
Tsvi Piran (The Hebrew University of Jerusalem)

Tõravere 2017
What are gamma-ray bursts (GRBs)?

Prompt MeV emission (most intense phase, \(\sim 10 \) s duration)
- How is it produced?
- How can it be modeled?
- Fitting models to data: what can we learn?

Afterglow emission (multiwavelength; duration up to several months)
- GeV (+optical+TeV) flashes
Discovery

- Vela satellites (USA)
- 1967: extraterrestrial flash of gamma-rays lasting a few seconds
- First publication: Klebesadel et al. (1973)

Cosmological origin

 - X-ray afterglows
 => accurate positions
 => optical follow-up
 => redshifts (first GRB 970508, z>0.83)
 => cosmological origin

⇒ Huge energy budget

(Meegan et al. 1992)
Fermi Gamma-ray Space Telescope (formerly GLAST)

- Launched on 11 June 2008
- Instruments:
 - Gamma-ray burst monitor (GBM): 8 keV - 40 MeV, FOV: entire unocculted sky
 - Large area telescope (LAT): 20 MeV - 300 GeV, FOV: 20% of the sky
Light curves

Prompt
- Duration \(~10\) seconds
- Highly variable
- Apparent energy release \(10^{51} \text{ to } 10^{55}\) erg
- Spectrum single-peaked, maximum near 1 MeV

Afterglow
- Duration days to months
- Relatively smooth, usually monotonic light curve
- Energy \(~10\)% of prompt
- Emission from radio to GeV gamma-rays

GRB 130427A

Perley et al. 2014
Light curves

Prompt

- Duration ≈ 10 seconds
- Highly variable
- Apparent energy release $10^{51} - 10^{55}$ erg
- Spectrum single-peaked, maximum near 1 MeV

Afterglow

- Duration days to months
- Relatively smooth, usually monotonic light curve
- Energy $\approx 10\%$ of prompt
- Emission from radio to GeV gamma-rays

Perley et al. 2014

GRB 130427A

![Light curve graph]

$E^2 N_e$ (erg cm$^{-2}$ s$^{-1}$)

Photon Energy (MeV)

Flux (Jy)

Time from GBM trigger (d)
Evidence for relativistic motion

Pair production optical depth in a stationary source:

\[\tau_{\gamma\gamma} \approx 0.2 \sigma_T n_\gamma R \approx 10^{11} \left(\frac{L_{\text{rad}}}{10^{52} \text{erg/s}} \right) \left(\frac{\delta t}{1 \text{s}} \right)^{-1} \]

\[R \leq c \, \delta t = 3 \times 10^{10} \frac{\delta t}{1 \text{s}} \text{ cm} \]

\[n_\gamma = \frac{u_{\text{rad}}}{\epsilon_\gamma} = \frac{L_{\text{rad}}}{4\pi c R^2 \epsilon_\gamma} \]

\[\epsilon_\gamma = 1 \text{ MeV} \quad (\text{observed}) \]

Stationary source would be highly opaque to gamma-rays

\[\Rightarrow \text{relativistic motion (} \Gamma \geq 100) : \]

- Contracts observed \(\delta t \)
- Decreases comoving density
Birth of a compact object (neutron star or a black hole)
- stellar collapse (long GRBs)
- NS-NS or NS-BH merger (short GRBs)

Hyperaccretion (~ $1M_\odot$/sec) + angular momentum \(\Rightarrow\) pair of collimated jets

Relativistic jet
- burrows through the star \(r \approx 10^{11}\) cm
- accelerates to \(\Gamma = 100 - 1000\)
- expands to transparency (Thomson photosphere at \(r \approx 10^{13}\) cm)
- generates a collimated beam of gamma rays via *internal* dissipation (prompt MeV emission)
- shocks the ambient medium \(\Rightarrow\) multiwavelength afterglow; \(r \geq 10^{16}\) cm
GRB prompt emission

Radiative process/mechanism?

How/where is it generated?
GRB prompt emission: optically thin vs. thick

- Main model classes:
 - Synchrotron shock models
 - Photospheric models

Central engine

L \sim 10^{50} \text{ erg/s}

Jet

Photosphere

\tau_T = 1

\tau_T \gg 1

Heating

Internal shocks

Rad. process: synchrotron

Rad. process: inverse Compton

\Gamma_f

\Gamma_s

\tau_T \ll 1
Peak widths and position

Axelsson & Borgonovo (2015)

Goldstein et al. (2012)
Low-energy slope

Optically thin + radiatively efficient
\[\Rightarrow \alpha < -\frac{3}{2} \] (synch. or IC)

Preece et al. (2000)
How to generate narrowly peaked spectra?
Photospheric emission

- **Spectral peaks**
 - Narrow: *can* be as narrow as Planck
 - Position
 - Natural scale
 - Observed
 \[\overline{E}_{ph} \approx 5 - 10 \text{ MeV} \]
 \[\overline{E}_{pk} \approx 500 \text{ keV} \]
 \[\implies \text{photon production} \]

- **Non-thermal shape**

Extended (volume) dissipation
Beloborodov, Stern, Svensson (2000)
Dissipative jets

- Jets could be dissipative throughout their expansion
 - Recollimation shocks
 - Internal shocks
 - Magnetic reconnection

- Emerging radiation knows about expansion history

Morsony, Lazzati, Begelman (2007)
Spectral formation in a heated jet

PH. GENERATION
THERMAL SPECTRUM
DIS \rightarrow S \rightarrow I \rightarrow P \rightarrow A \rightarrow T \rightarrow I

R \sim 10^{12} \text{ cm}
\tau_T \sim 10^2

Photosphere
\tau_T = 1

\tau = \frac{1}{2} \text{ PH. GENERATION}

3kT_e \rightarrow h\nu

\nu F_\nu

E_{pk} \rightarrow h\nu

\nu F_\nu

\text{Photon Energy (eV)}

10^{-1} \rightarrow 10^0 \rightarrow 10^1 \rightarrow 10^2 \rightarrow 10^3
Radiative transfer

\[\frac{1}{r^2 \Gamma} \frac{\partial}{\partial \ln r} \left[(1 + \mu) r^2 \Gamma I_\nu\right] = \frac{r}{\Gamma} (j_\nu - \kappa_\nu I_\nu) \]
\[+ (1 + \mu)(1 - g\mu) \frac{\partial I_\nu}{\partial \ln \nu} - \frac{\partial}{\partial \mu} \left[(1 - \mu^2)(1 + \mu) g I_\nu\right] \]

- **Intensity** \(I_\nu \)
- **Photon angle** \(\mu \)
- **Acceleration parameter** \(g = 1 - \frac{d \ln \Gamma}{d \ln r} \)

Processes: Compton, synchrotron, pair-production/annihilation

Acceleration:
\[\frac{d \Gamma}{dr} = \sigma_T Z \pm \frac{4\pi I_1}{m_p c^3} \]
Spectral formation

- Initial spectrum: Wien
- Peak shifted to lower energies due to photon production
- Broadening starts near Wien radius, proceeds through the photosphere
- Final spectrum: Band

![Graph showing spectra at different stages of expansion](image.png)

- Heating-cooling balance
- $\tau_T \gg 1$

\[r_{\text{min}} - r_{\text{Wien}} \]

\[e_{\pm} \text{ pairs} \]

\[\log(E/L_E) \]

\[\log(E) \text{ [MeV]} \]
\[L_{\text{jet}} = 10^{52} \text{ erg s}^{-1} \]
\[= 300 \]
\[B = 0.01 \]
\[\frac{dL_{\text{heat}}}{d\ln R} = \text{const} \]
‘Fits’ to data: GRB 990123

- Simulation parameters:
 - Initial $\Gamma(r_{\text{min}}) = 80$; $r_{\text{min}} = 3 \times 10^{10} \text{ cm}$
 - Final Lorentz factor $\Gamma_f = 590$
 - $\varepsilon_B = 0.02$

![Spectrum (cosmological rest frame)](image)

Fit: Band (Briggs et al. 1999)

$\alpha = -0.6$; $\beta = -3.11$

$E_{pk} = 720(1+z) \text{ keV}; z = 1.6$
Simulation parameters:

- Initial $\Gamma(r_{\text{min}}) = 100$; $r_{\text{min}} = 3 \times 10^{10}$ cm
- Final Lorentz factor $\Gamma_f = 340$
- $\varepsilon_B = 0.1$
- Heating at $\tau < 1$, passive at $\tau > 1$

Phenomenological fit: Band (Golenetskii et al. 2013)

- $\alpha = -0.96$; $\beta = -4.17$
- $E_{pk} = 1.028(1+z)$ MeV; $z = 0.34$
GRB 090902B

- Simulation parameters:
 - Initial $\Gamma(r_{\text{min}}) = 70$; $r_{\text{min}} = 3 \times 10^{10}$ cm
 - Final Lorentz factor $\Gamma_f = 1200$
 - $\varepsilon_B = 0.01$
 - Strong non-thermal heating

Phenomenological fit: Band + power-law (Abdo et al. 2009)
\[\alpha = 0.07; \beta = -3.9; \Gamma_{\text{pl}} = -1.94 \]
\[E_{\text{pk}} = 908(1+z) \text{ keV}; z = 1.8 \]
GRB prompt emission: summary

- Dissipative jets
 - Non-thermal narrowly peaked spectra
 - Different heating histories result in a variety of spectral shapes
 - Allows reconstruction of jet properties/expansion history
 with a physical model
(Very) early afterglow: GeV/TeV - optical flashes
Observations: LAT lightcurves

- ‘Regular’ behaviour:
 - Delayed rise
 - Peaks during the prompt: likely not associated with blast wave deceleration
 - Extended monotonic decay (lasts well beyond prompt duration)
- External origin (forward shock)?

Flux above 100 MeV
Emission mechanism

- **Synchrotron?**
 - Theoretical limit: a few 10 MeV (comoving)
 $$\Rightarrow \sim 10 \text{ GeV} \text{ (observed)}$$
 - Observed: $95 \text{ GeV} @ 243 \text{ s}$, $32 \text{ GeV} @ 34 \text{ ks}$ (GRB 130427A)
 - Kumar & Barniol Duran (2009)
 - Asano et al. (2009)
 - Razzaque et al. (2010)
 - Ghisellini (2010)
 - E.g. Nakar & Piran (2010)

- **Inverse Compton**
 - Bosnjak et al. 2009
 - Toma et al. 2011
 - GeV peak during prompt \Rightarrow intense IC cooling by prompt radiation
Proposed mechanism: inverse Compton scattering of prompt MeV radiation in the forward shock in a pair-enriched external medium

Prompt radiation pair-loads and pre-accelerates the ambient medium ahead of the forward shock (Beloborodov 2002)

Shock heated (*not* accelerated) pairs upscatter prompt MeV photons to GeV

- Can be modeled from first principles
- Relies only on well understood physics
Flash peaks when:

- Early decay due to fast evolution of γ_{inj} and Z_{\pm}

$\gamma_{\text{inj}} \approx \sqrt{\frac{E_{\text{GeV}}}{E_{\text{MeV}}}} \approx 30$

$Z_{\pm} \approx 10^4$ - pair loading
Light curve

- Delayed rise
- Peak during the prompt
- persists well after prompt ends

External medium:
Progenitor wind

\[\dot{M} = 10^{-5} M_{\text{Sun}} / \text{yr} \]

Wind parameter

\[A = \frac{r^2}{2.5 \times 10^{11} \text{ g cm}^{-1}} \]

Beloborodov, Hascoet, IV (2013)

Non-thermal particle acceleration NOT required
4 adjustable parameters

\[A = r^2 \]

<table>
<thead>
<tr>
<th>GRB</th>
<th>(E_{\text{GRB}}) (10^{54} \text{ erg})</th>
<th>(T_{\text{GRB}}) [s]</th>
<th>(T_p / T_{\text{GRB}})</th>
<th>(z) (^d)</th>
<th>(\Lambda^e) (10^{11} \text{ g/cm})</th>
<th>(\Gamma_{\text{ej}}^f)</th>
<th>(\epsilon_{\text{rad}}^g)</th>
<th>(\epsilon_B^h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>080916C</td>
<td>8.8</td>
<td>12</td>
<td>0.1</td>
<td>4.35</td>
<td>1.5 (\rightarrow) 3.5</td>
<td>900 (\rightarrow) 1400</td>
<td>0.17</td>
<td>–</td>
</tr>
<tr>
<td>090510</td>
<td>0.11</td>
<td>1.1</td>
<td>0.4</td>
<td>0.903</td>
<td>1.2 (\rightarrow) 2</td>
<td>700 (\rightarrow) 800</td>
<td>0.1</td>
<td>–</td>
</tr>
<tr>
<td>090510 (uniform)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(n = 2 \times 10^4 \text{ cm}^{-3})</td>
<td>900</td>
<td>0.1</td>
<td>–</td>
</tr>
<tr>
<td>090902B</td>
<td>3.6</td>
<td>7.8</td>
<td>0.5</td>
<td>1.822</td>
<td>1 (\rightarrow) 2</td>
<td>600 (\rightarrow) 900</td>
<td>0.4</td>
<td>–</td>
</tr>
<tr>
<td>090926A</td>
<td>2.2</td>
<td>4.2</td>
<td>0.8</td>
<td>2.106</td>
<td>1 (\rightarrow) 2</td>
<td>600 (\rightarrow) 1000</td>
<td>0.25</td>
<td>–</td>
</tr>
<tr>
<td>110731A</td>
<td>0.76</td>
<td>1.9</td>
<td>0.8</td>
<td>2.83</td>
<td>0.4 (\rightarrow) 0.8</td>
<td>800 (\rightarrow) 1100</td>
<td>0.2</td>
<td>–</td>
</tr>
<tr>
<td>120711A</td>
<td>1.65</td>
<td>48</td>
<td>1</td>
<td>1.405</td>
<td>1 (\rightarrow) 3</td>
<td>320 (\rightarrow) 400</td>
<td>0.3</td>
<td>(10^{-5} \leftrightarrow 10^{-6})</td>
</tr>
<tr>
<td>130427A</td>
<td>0.85</td>
<td>15</td>
<td>1</td>
<td>0.34</td>
<td>0.15 (\rightarrow) 0.5</td>
<td>300 (\rightarrow) 350</td>
<td>0.8</td>
<td>(10^{-3} \leftrightarrow 2 \times 10^{-4})</td>
</tr>
</tbody>
</table>

Hascoet, IV, Beloborodov (2013)
Hascoet, IV, Beloborodov (2013)
GeV+optical flash: GRB 130427A

- GeV-emitting particles also radiate optical via synchrotron
 - Optical peaks simultaneously with GeV (Vestrand et al. 2014)
 - Forward shock magnetization: $\varepsilon_B = \text{a few } \times 10^{-4}$
GeV+optical flash: GRB 120711A

Entire complex optical light curve reproduced by 4-parameter model
TeV flash

- Intrinsic TeV fluence can rival GeV (even MeV)
- Timescale – minutes
- Accessible to current TeV observatories (e.g. Veritas, MAGIC)
TeV detection

Detector threshold ~50-100 GeV

Attenuation at z=1:
- 0.5 @ 0.1 TeV
- 0.005 @ 0.3 TeV

Narrow window around 0.1 TeV for detection

Domínguez et al. (2011)
GeV (+optical) flashes: summary

- Forward shock in a pair-loaded Wolf-Rayet wind
- Radiative mechanism:
 - GeV/TeV: inverse Compton
 - optical: synchrotron
- Emitting particles quasi-thermal – no dependence on poorly understood physical processes
- Yields Γ and external medium density (+ shock magnetization if optical flash observed)