Quantum Gravity Phenomenology

- Lateshift and Photon orbits, observable traces of quantum gravity?

Christian Pfeifer
Laboratory for Theoretical Physics, Center of Excellence “The Dark Universe”
University of Tartu

Joint work with L. Barcaroli, L. Brunkhorst, G. Gubitosi, N. Loret

Tartu Observatory Seminar
Tartu October 2017
1. Quantum Gravity Phenomenology

2. Dispersion Relations as Hamilton Functions

3. Symmetric Dispersion Relations

4. Observables: Cosmology

5. Observables: Spherical Symmetry

6. Conclusion and Outlook
1. Quantum Gravity Phenomenology

2. Dispersion Relations as Hamilton Functions

3. Symmetric Dispersion Relations

4. Observables: Cosmology

5. Observables: Spherical Symmetry

6. Conclusion and Outlook
Assumptions:
• There exists a consistent, yet unknown, theory of quantum gravity which describes the quantum field theoretical nature of the gravitational interaction.
Assumptions:

- There exists a consistent, yet unknown, theory of quantum gravity which describes the quantum field theoretical nature of the gravitational interaction.
- The scale at which this quantum field theoretical of gravity becomes relevant, i.e., the non-classical nature of gravity leads to measurable effects, is the Planck Scale.

\[
E_{Pl} = \sqrt{\frac{\hbar c^5}{G}} \approx 1.956 \times 10^9 \text{J} \approx 1.2209 \times 10^{19} \text{GeV}
\]

\[
\ell_{Pl} = \sqrt{\frac{\hbar G}{c^3}} \approx 1.616 \times 10^{-35} \text{m}
\]
Quantum Gravity Phenomenology

Assumptions:

• There exists a consistent, yet unknown, theory of quantum gravity which describes the quantum field theoretical nature of the gravitational interaction.
• The scale at which this quantum field theoretical of gravity becomes relevant, i.e. the non-classical nature of gravity leads to measurable effects, is the Planck Scale

\[E_{Pl} = \sqrt{\frac{\hbar c^5}{G}} \approx 1,956 \times 10^9 J \approx 1,2209 \times 10^{19} \text{GeV} \]

\[\ell_{Pl} = \sqrt{\frac{\hbar G}{c^3}} \approx 1,616 \times 10^{-35} \text{m} \]

Candidates for quantum gravity:

• String theory (fundamental particles are modes of one-dimensional strings)
• Loop quantum gravity (canonical quantisation of general relativity)
• Causal dynamical triangulation (quantise general relativity on a lattice)
• Non-commutative geometry (use non-commuting coordinates on spacetime)
• …
Aim:

- Without knowing the fundamental theory of quantum gravity one seeks to describe possible observable effects which emerge from the fundamental theory as perturbations of the classical theory
Quantum Gravity Phenomenology

Aim:
• Without knowing the fundamental theory of quantum gravity one seeks to describe possible observable effects which emerge from the fundamental theory as perturbations of the classical theory

Possible effects:
• Modifications of the dynamics of general relativity (f(R,\Phi) theories, …)
• Variations of the constants of nature (c, G, \alpha, …)
• Violations or modifications of Lorentz invariance
• Modified dispersion relations for particle motion
• Energy dependent spacetime geometries
• …
Quantum Gravity Phenomenology

Aim:
• Without knowing the fundamental theory of quantum gravity one seeks to describe possible observable effects which emerge from the fundamental theory as perturbations of the classical theory

Possible effects:
• Modifications of the dynamics of general relativity ($f(R,\Phi)$ theories, …)
• Variations of the constants of nature (c, G, α, \ldots)
• Violations or modifications of Lorentz invariance
• Modified dispersion relations for particle motion
• Energy dependent spacetime geometries
• …

Task:
• Model effect as general as possible and compare predictions to observation
Quantum Gravity Phenomenology

Aim:
• Without knowing the fundamental theory of quantum gravity one seeks to describe possible observable effects which emerge from the fundamental theory as perturbations of the classical theory

Possible effects:
• Modifications of the dynamics of general relativity ($f(R,\Phi)$ theories, …)
• Variations of the constants of nature (c, G, α, \ldots)
• Violations or modifications of Lorentz invariance
• Modified dispersion relations for particle motion
• Energy dependent spacetime geometries
• …

Task:
• Model effect as general as possible and compare predictions to observation
We probe spacetime with elementary particles, photons, neutrinos, …
The Pictorial Idea

We probe spacetime with elementary particles, photons, neutrinos, …

- Low energetic photons probe spacetime at larger scales
The Pictorial Idea

We probe spacetime with elementary particles, photons, neutrinos, …

- Low energetic photons probe spacetime at larger scales
- The higher the probe energy the smaller the probed scale
We probe spacetime with elementary particles, photons, neutrinos, …

- Low energetic photons probe spacetime at larger scales
- The higher the probe energy the smaller the probed scale
- The larger the interaction between probe and quantum nature of gravity
We probe spacetime with elementary particles, photons, neutrinos, …

- Low energetic photons probe spacetime at larger scales
- The higher the probe energy the smaller the probed scale
- The larger the interaction between probe and quantum nature of gravity

The higher the probe particle energy
the higher the influence of the quantum nature of gravity
We probe spacetime with elementary particles, photons, neutrinos, …

- Low energetic photons probe spacetime at larger scales
- The higher the probe energy the smaller the probed scale
- The larger the interaction between probe and quantum nature of gravity

The higher the probe particle energy
the higher the influence of the quantum nature of gravity

Effective model: Energy dependent spacetime geometry

$g_{ab}(x, \frac{E}{E_{Pl}})$
We probe spacetime with elementary particles, photons, neutrinos, …

- Low energetic photons probe spacetime at larger scales.
- The higher the probe energy the smaller the probed scale.
- The larger the interaction between probe and quantum nature of gravity.

Effective model: Energy dependent spacetime geometry

\[g_{ab}(x, \frac{E}{E_{Pl}}) \]

Difficulties:

- Particle energy E is an observer dependent quantity.
 -> observer dependent visibility of quantum gravity?
- How to describe “energy” dependent spacetime geometry covariant?
Deformed special relativity: [Magueijo, Smolin 2004]

\[D_{SR} (p) = \eta^{ab} p_a p_b = -m^2 \iff E^2 = \tilde{p}^2 + m^2 \]
Deformed special relativity: [Magueijo, Smolin 2004]

\[D_{SRT}(p) = \eta^{ab} p_a p_b = -m^2 \iff E^2 = \bar{p}^2 + m^2 \]

Deformation Map \(U \)

\[U(p) = \left(f\left(\frac{E}{E_{Pl}}\right)E, g\left(\frac{E}{E_{Pl}}\right)\bar{p}\right) \]
Deformed special relativity: [Magueijo, Smolin 2004]

\[D_{SRT}(p) = \eta^{ab} p_a p_b = -m^2 \iff E^2 = \bar{p}^2 + m^2 \]

Deformation Map \(U \)

\[U(p) = \left(f\left(\frac{E}{E_P} \right) E, g\left(\frac{E}{E_P} \right) \bar{p} \right) \]

\[D_{DSRT}(p) = \eta^{ab} U(p)_a U(p)_b = -m^2 \iff E^2 f^2 = g^2 \bar{p}^2 + m^2 \]
Deformed special relativity: [Magueijo, Smolin 2004]

\[D_{SRT}(p) = \eta^{ab} p_a p_b = -m^2 \iff E^2 = \vec{p}^2 + m^2 \]

Deformation Map \(U \)

\[U(p) = (f(\frac{E}{E_{Pl}})E, g(\frac{E}{E_{Pl}})\vec{p}) \]

\[D_{DSRT}(p) = \eta^{ab} U(p)_a U(p)_b = -m^2 \iff E^2 f^2 = g^2 \vec{p}^2 + m^2 \]

Absorb deformation into metric

\[D_{DSRT} = \tilde{\eta}^{ab}(\frac{E}{E_{Pl}}) p_a p_b \]

Invariant under deformed Lorentz transformations \(\Lambda(\frac{E}{E_{Pl}}) \)
Difficulties:

- Particle energy E is an observer dependent quantity
 \rightarrow observer dependent visibility of quantum gravity?
- How to describe “energy” dependent spacetime geometry covariant?

Deformed special relativity: [Magueijo, Smolin 2004]

\[
D_{SRT}(p) = \eta^{ab} p_a p_b = -m^2 \Leftrightarrow E^2 = \vec{p}^2 + m^2
\]

Deformation Map U

\[
U(p) = (f\left(\frac{E}{E_{Pl}}\right)E, g\left(\frac{E}{E_{Pl}}\right)\vec{p})
\]

\[
D_{DSRT}(p) = \eta^{ab} U(p)_a U(p)_b = -m^2 \Leftrightarrow E^2 f^2 = g^2 \vec{p}^2 + m^2
\]

Absorb deformation into metric

\[
D_{DSRT} = \tilde{\eta}^{ab}\left(\frac{E}{E_{Pl}}\right)p_a p_b
\]

Invariant under deformed Lorentz transformations $\Lambda\left(\frac{E}{E_{Pl}}\right)$

Christian Pfeifer, Quantum Gravity Phenomenology - Observables, Tartu 2017
Curved Momentum Space: Doubly Special Relativity [Amelino-Camelia 2008],
Relative locality [Amelino-Camelia, Freidel, Kowalski Gilkman, Smolin 2011]

\[g = g^{ab}(p) dp_a \otimes dp_b, \quad D(p) = g^{ab}(p)p_a p_b = -m^2 \]
Curved Momentum Space: Doubly Special Relativity [Amelino-Camelia 2008],
Relative locality [Amelino-Camelia, Freidel, Kowalski Gilkman, Smolin 2011]

\[g = g^{ab}(p) dp_a \otimes dp_b, \quad D(p) = g^{ab}(p)p_ap_b = -m^2 \]

- modified addition of moment

\[(p \oplus q)_a = p_a + q_a + \ell_P \Gamma^{cd}_{\ a} p_c q_d + \ldots \]

- spacetime emerges from Legendre transformation

\[L(x, p, \lambda) = \dot{p}_a x^a + \lambda(D(p) - m^2) \]

- the fundamental space where physics happen is momentum space
Curved Momentum Space: Doubly Special Relativity\cite{Amelino-Camelia 2008},
Relative locality \cite{Amelino-Camelia, Freidel, Kowalski Glikman, Smolin 2011}

\[
g = g^{ab}(p)dp_a \otimes dp_b, \quad D(p) = g^{ab}(p)p_a p_b = -m^2
\]

- modified addition of moment
 \[
 (p \oplus q)_a = p_a + q_a + \ell_P \Gamma^{cd} a p_c q_d + \ldots
 \]
- spacetime emerges from Legendre transformation
 \[
 L(x, p, \lambda) = \dot{p}_a x^a + \lambda(D(p) - m^2)
 \]
- the fundamental space where physics happen is momentum space

Difficulties:
- How to determine $g(p)$?
- How are observers modelled?
- How to decompose p into energy E and three momentum \vec{p}?

\[S[x] = \int d\tau L(x, \dot{x}) \Rightarrow \frac{d}{d\tau} \frac{\partial}{\partial \dot{x}^a} L - \frac{\partial}{\partial x^a} L = 0 \]

• a homogeneous Lagrangian determines particle motion

\[S[x] = \int d\tau L(x, \dot{x}) \Rightarrow \frac{d}{d\tau} \frac{\partial}{\partial \dot{x}^a} L - \frac{\partial}{\partial x^a} L = 0 \]

- a homogeneous Lagrangian determines particle motion

\[p_a = \frac{\partial}{\partial \dot{x}^a} L, \quad H(x, p) = \dot{x}^a p_a - L(x, \dot{x}(x, p)) \]

- canonical momentum and Hamilton function

\[S[x] = \int d\tau L(x, \dot{x}) \Rightarrow \frac{d}{d\tau} \frac{\partial}{\partial \dot{x}^a} L - \frac{\partial}{\partial x^a} L = 0 \]

- a homogeneous Lagrangian determines particle motion

\[p_a = \frac{\partial}{\partial \dot{x}^a} L, \quad H(x, p) = \dot{x}^a p_a - L(x, \dot{x}(x, p)) \]

- canonical momentum and Hamilton function

\[H(x, p) = -m^2, \quad g^{ab}(x, p) = \frac{1}{2} \frac{\partial}{\partial p_a} \frac{\partial}{\partial p_b} H(x, p) \]

- dispersion relation and momentum dependent metric

\[S[x] = \int d\tau L(x, \dot{x}) \Rightarrow \frac{d}{d\tau} \frac{\partial}{\partial \dot{x}^a} L - \frac{\partial}{\partial x^a} L = 0 \]

- a homogeneous Lagrangian determines particle motion
 \[p_a = \frac{\partial}{\partial \dot{x}^a} L, \quad H(x, p) = \dot{x}^a p_a - L(x, \dot{x}(x, p)) \]

- canonical momentum and Hamilton function
 \[H(x, p) = -m^2, \quad g^{ab}(x, p) = \frac{1}{2} \frac{\partial}{\partial p_a} \frac{\partial}{\partial p_b} H(x, p) \]

- dispersion relation and momentum dependent metric

Difficulties:
- L often not smooth on the light-cone
- How are observers modelled?

\[S[\mathbf{x}] = \int d\tau L(\mathbf{x}, \dot{\mathbf{x}}) \Rightarrow \frac{d}{d\tau} \frac{\partial}{\partial \dot{x}^a} L - \frac{\partial}{\partial x^a} L = 0 \]

- a homogeneous Lagrangian determines particle motion

\[p_a = \frac{\partial}{\partial \dot{x}^a} L, \quad H(\mathbf{x}, p) = \dot{x}^a p_a - L(\mathbf{x}, \dot{x}(\mathbf{x}, p)) \]

- canonical momentum and Hamilton function

\[H(\mathbf{x}, p) = -m^2, \quad g^{ab}(\mathbf{x}, p) = \frac{1}{2} \frac{\partial}{\partial p_a} \frac{\partial}{\partial p_b} H(\mathbf{x}, p) \]

- dispersion relation and momentum dependent metric

Difficulties:
- L often not smooth on the light-cone
- How are observers modelled?

Solved: [CP 2013]

The Finsler spacetime framework
1. Quantum Gravity Phenomenology

2. Dispersion Relations as Hamilton Functions

3. Symmetric Dispersion Relations

4. Observables: Cosmology

5. Observables: Spherical Symmetry

6. Conclusion and Outlook
Dispersion Relations as Hamilton Functions

The local Lorentz invariant dispersion relation of a free point particle is

\[-E^2 + p_\alpha p_\beta \delta^{\alpha\beta} = -E^2 + \bar{p}^2 = -m^2\]

- m is the invariant mass parameter
- $E = g(\gamma,p)$ is the energy
- $p_\alpha = g(e_\alpha,p)$ is the spatial momentum

an observer on worldline γ associates to the particle with 4-momentum p
Dispersion Relations as Hamilton Functions

The local Lorentz invariant dispersion relation of a free point particle is

\[-E^2 + p_\alpha p_\beta \delta^{\alpha\beta} = -E^2 + \vec{p}^2 = -m^2\]

- m is the invariant mass parameter
- $E = g(\gamma, p)$ is the energy
- $p_\alpha = g(e_\alpha, p)$ is the spatial momentum

an observer on worldline γ associates to the particle with 4-momentum p

Covariant: From observer frames to a frame independent expression

\[e_\mu = A^a_\mu \partial_a \Rightarrow p_\mu = A^a_\mu p_a\]

The frame transformations transforms the dispersion relation:

\[-m^2 = g^{ab}(x) p_a p_b = H(x, p)\]
Dispersion Relations as Hamilton Functions

The local Lorentz invariant dispersion relation of a free point particle is

\[-E^2 + p_\alpha p_\beta \delta^{\alpha\beta} = -E^2 + \vec{p}^2 = -m^2\]

- m is the invariant mass parameter
- $E = g(\gamma, p)$ is the energy
- $p_\alpha = g(e_\alpha, p)$ is the spatial momentum

an observer on worldline γ associates to the particle with 4-momentum p

Covariant: From observer frames to a frame independent expression

\[e_\mu = A^a_\mu \partial_a \Rightarrow p_\mu = A^a_\mu p_a\]

The frame transformations transforms the dispersion relation:

\[-m^2 = g^{ab}(x)p_a p_b = H(x, p)\]

The covariant dispersion on a curved spacetime:

- Level set of a Hamilton function on phase space
- determines particle motion via Hamilton equations of motion
- determines the curved geometry of phase space, momentum space and spacetime (Hamilton geometry) [Barcaroli 2015]
The local Lorentz invariant dispersion relation of a free point particle is
\[-E^2 + p_\alpha p_\beta \delta^{\alpha\beta} = -E^2 + \vec{p}^2 = -m^2\]

- \(m\) is the invariant mass parameter
- \(E = g(\gamma, p)\) is the energy
- \(p_\alpha = g(e_\alpha, p)\) is the spatial momentum

an observer on worldline \(\gamma\) associates to the particle with 4-momentum \(p\)

General Principle:

Four momentum dependent spacetime and momentum space geometry modelled by Hamilton function \(H(x, p)\)

\[m^2 = g_{ab}(x)p^a p^b = H(x, p)\]

The covariant dispersion on a curved spacetime:
- Level set of a Hamilton function on phase space
- determines particle motion via Hamilton equations of motion
- determines the curved geometry of phase space, momentum space and spacetime (Hamilton geometry)
 [Barcaroli 2015]
1. Quantum Gravity Phenomenology

2. Dispersion Relations as Hamilton Functions

3. Symmetric Dispersion Relations

4. Observables: Cosmology

5. Observables: Spherical Symmetry

6. Conclusion and Outlook
Symmetries of Dispersion Relations

Symmetries: Diffeomorphisms on phase space which leave H invariant

\[H(\Phi(x, p)) = H(x + \xi, p + \bar{\xi}) = H(x, p) \]
Symmetries of Dispersion Relations

Symmetries: Diffeomorphisms on phase space which leave H invariant

$$H(\Phi(x, p)) = H(x + \xi, p + \bar{\xi}) = H(x, p)$$

Infinitesimal this corresponds to: H is constant along a vector field X

$$X(H) = \xi^a(x, p) \partial_a H + \bar{\xi}_a(x, p) \bar{\partial}^a H = 0$$

[Barcaroli, Brunkhorst, Gubitosi, Loret, CP, 2016]
Symmetries of Dispersion Relations

Symmetries: Diffeomorphisms on phase space which leave H invariant

$$H(\Phi(x, p)) = H(x + \xi, p + \bar{\xi}) = H(x, p)$$

Infinitesimal this corresponds to: H is constant along a vector field X

$$X(H) = \xi^a(x, p)\partial_a H + \bar{\xi}_a(x, p)\bar{\partial}^a H = 0$$

Manifold induced symmetries are defined by special vector fields X^C

$$X^C(H) = \xi^a(x)\partial_a H - p_q\partial_a \xi^q(x)\bar{\partial}^a H = 0$$
Symmetries of Dispersion Relations

Symmetries: Diffeomorphisms on phase space which leave H invariant

$$H(\Phi(x, p)) = H(x + \xi, p + \bar{\xi}) = H(x, p)$$

Infinitesimal this corresponds to: H is constant along a vector field X

$$X(H) = \xi^a(x, p)\partial_a H + \bar{\xi}_a(x, p)\bar{\partial}^a H = 0$$

Manifold induced symmetries are defined by special vector fields X^c

$$X^C(H) = \xi^a(x)\partial_a H - p_q \partial_a \xi^q(x)\bar{\partial}^a H = 0$$

These are complete lifts of vector fields X defining infinitesimal
diffeomorphisms on spacetime

$$X = \xi^a(x)\partial_a$$
Symmetries of Dispersion Relations

Symmetries: Diffeomorphisms on phase space which leave H invariant

$$H(\Phi(x, p)) = H(x + \xi, p + \bar{\xi}) = H(x, p)$$

Infinitesimal this corresponds to: H is constant along a vector field X

$$X(H) = \xi^a(x, p)\partial_a H + \bar{\xi}_a(x, p)\bar{\partial}^a H = 0$$

Manifold induced symmetries are defined by special vector fields X^C

$$X^C(H) = \xi^a(x)\partial_a H - p_q\partial_a \xi^q(x)\bar{\partial}^a H = 0$$

These are complete lifts of vector fields X defining infinitesimal
diffeomorphisms on spacetime

$$X = \xi^a(x)\partial_a$$

Each manifold induced symmetry gives rise to a constant of motion

$$X(P) = \xi^a(x)p_a$$
Symmetries of Dispersion Relations

Symmetries: Diffeomorphisms on phase space which leave H invariant

$$H(\Phi(x, p)) = H(x + \xi, p + \bar{\xi}) = H(x, p)$$

Infinitesimal this corresponds to: H is constant along a vector field X

$$X(H) = \xi^a(x, p)\partial_a H + \bar{\xi}_a(x, p)\bar{\partial}^a H = 0$$

Manifolds induced symmetries are defined by special vector fields X defining infinitesimal diffeomorphisms on spacetime

The generalisation of the Killing equation determines spacetime symmetric Hamiltonians

$$X^C(H) = \xi^a(x)\partial_a H - p_q\partial_a \xi^q(x)\bar{\partial}^a H = 0$$

These are complete lifts of vector fields X defining infinitesimal diffeomorphisms on spacetime

$$X = \xi^a(x)\partial_a$$

Each manifold induced symmetry gives rise to a constant of motion

$$X(P) = \xi^a(x)p_a$$
Homogeneous and isotropic dispersion relations

Homogeneity and isotropy is induced by the vector fields

\[X_1 = \sin \phi \partial_\theta + \cot \theta \cos \phi \partial_\phi \]
\[X_2 = -\sin \phi \partial_\theta + \cot \theta \sin \phi \partial_\phi \]
\[X_3 = \partial_\phi \]
\[X_4 = \chi \sin \theta \cos \phi \partial_r + \frac{\chi}{r} \cos \theta \cos \phi \partial_\theta - \frac{\chi}{r \sin \theta} \sin \phi \partial_\phi \]
\[X_5 = \chi \sin \theta \sin \phi \partial_r + \frac{\chi}{r} \cos \theta \sin \phi \partial_\theta + \frac{\chi}{r \sin \theta} \cos \phi \partial_\phi \]
\[X_6 = \chi \cos \theta \partial_r - \frac{\chi}{r} \sin \theta \partial_\theta \]
Homogeneous and isotropic dispersion relations

Homogeneity and isotropy are induced by the vector fields

\[X_1 = \sin \phi \partial_{\theta} + \cot \theta \cos \phi \partial_{\phi} \]
\[X_2 = -\sin \phi \partial_{\theta} + \cot \theta \sin \phi \partial_{\phi} \]
\[X_3 = \partial_{\phi} \]
\[X_4 = \chi \sin \theta \cos \phi \partial_{r} + \frac{\chi}{r} \cos \theta \cos \phi \partial_{\theta} - \frac{\chi}{r} \frac{\sin \phi}{\sin \theta} \partial_{\phi} \]
\[X_5 = \chi \sin \theta \sin \phi \partial_{r} + \frac{\chi}{r} \cos \theta \sin \phi \partial_{\theta} + \frac{\chi}{r} \frac{\cos \phi}{\sin \theta} \partial_{\phi} \]
\[X_6 = \chi \cos \theta \partial_{r} - \frac{\chi}{r} \sin \theta \partial_{\theta} \]

The symmetry conditions \(X_I^C(H) = 0 \) yields

\[H(x, p) = H(t, p_t, w), \quad w^2 = (1 - kr^2)p_r^2 + \frac{1}{r^2} p_{\theta}^2 + \frac{1}{r^2 \sin \theta^2} p_{\phi}^2 \]
Spherically Symmetric Dispersion Relations

Spherical symmetry is induced by the vector fields

\[X_1 = \sin \phi \partial_\theta + \cot \theta \cos \phi \partial_\phi \]
\[X_2 = -\sin \phi \partial_\theta + \cot \theta \sin \phi \partial_\phi \]
\[X_3 = \partial_\phi \]
\[X_4 = \chi \sin \theta \cos \phi \partial_r + \frac{\chi}{r} \cos \theta \cos \phi \partial_\theta - \frac{\chi \sin \phi}{r \sin \theta} \partial_\phi \]
\[X_5 = \chi \sin \theta \sin \phi \partial_r + \frac{\chi}{r} \cos \theta \sin \phi \partial_\theta + \frac{\chi \cos \phi}{r \sin \theta} \partial_\phi \]
\[X_6 = \chi \cos \theta \partial_r - \frac{\chi}{r} \sin \theta \partial_\theta \]

The symmetry conditions \(X^c_1(H) = 0 \) yields

\[H(x, p) = H(t, p_t, w), \quad w^2 = (1 - kr^2)p_r^2 + \frac{1}{r^2}p_\theta^2 + \frac{1}{r^2 \sin \theta^2}p_\phi^2 \]

\[H(x, p) = H(t, r, p_t, p_r, w), \quad w^2 = p_\theta^2 + \frac{1}{\sin \theta^2}p_\phi^2 \]
1. Quantum Gravity Phenomenology

2. Dispersion Relations as Hamilton Functions

3. Symmetric Dispersion Relations

4. Observables: Cosmology

5. Observables: Spherical Symmetry

6. Conclusion and Outlook
The most general homogeneous and isotropic Hamiltonian

\[H(x, p) = H(t, p_t, w), \quad w^2 = (1 - kr^2) p_r^2 + \frac{1}{r^2} p_\theta^2 + \frac{1}{r^2 \sin \theta^2} p_\phi^2 \]
Massless Particle Dynamics

The most general homogeneous and isotropic Hamiltonian

\[H(x, p) = H(t, p_t, w), \quad w^2 = (1 - kr^2)p_r^2 + \frac{1}{r^2}p_\theta^2 + \frac{1}{r^2\sin \theta^2}p_\phi^2 \]

Hamilton equations of motion for curves: \((t(\tau), r(\tau), \Theta = \frac{\pi}{2}, \phi = 0)\)

\[\dot{p}_t = -\partial_t H \]
\[\dot{p}_r = \partial_w H \frac{1}{w} kr p_r^2 \]
\[\dot{p}_\theta = 0 \]
\[\dot{p}_\phi = 0 \]
\[\dot{t} = \bar{\partial}_t H \]
\[\dot{r} = \partial_w H \frac{1}{w} \chi^2 p_r \]
\[\dot{\theta} = 0 \]
\[\dot{\phi} = 0 \]
The most general homogeneous and isotropic Hamiltonian

\[H(x, p) = H(t, p_t, w), \quad w^2 = (1 - kr^2)p_r^2 + \frac{1}{r^2}p_\theta^2 + \frac{1}{r^2 \sin \theta^2}p_\phi^2 \]

Hamilton equations of motion for curves: \((t(\tau), r(\tau), \Theta = \frac{\pi}{2}, \phi = 0)\)

\[\dot{p}_t = -\partial_t H \]
\[\dot{p}_r = \partial_w H \frac{1}{w} kr p_r^2 \]
\[\dot{t} = \bar{\partial}_t H \]
\[\dot{r} = \partial_w H \frac{1}{w} \chi^2 p_r \]

Constant of motion

\[w^2 = \text{const} = \chi p_r^2 \]

Two remaining equations of interest

\[H(t, p_t, w) = 0 \iff p_t(t, w) \]
\[r'(t) = \frac{dr}{dt} = \frac{\dot{r}}{t} = \frac{1}{w} \chi^2 p_r \frac{\partial_w H}{\partial_t} \]
Two remaining equations of interest

\[H(t, p_t, w) = 0 \quad \Leftrightarrow \quad p_t(t, w) \]

\[r'(t) = \frac{dr}{dt} = \frac{\dot{r}}{t} = \frac{1}{w} \chi^2 p_r \frac{\partial_w H}{\partial_t} \]

Redshift:

\[z(t_i, t_f) \equiv \frac{p_t(t_i) - p_t(t_f)}{p_t(t_f)} \]
Two remaining equations of interest

\[H(t, p_t, w) = 0 \Leftrightarrow p_t(t, w) \]

\[r'(t) = \frac{dr}{dt} = \frac{\dot{r}}{t} = \frac{1}{w} \chi^2 p_r \frac{\partial_w H}{\partial t} \]

Redshift:

\[z(t_i, t_f) \equiv \frac{p_t(t_i) - p_t(t_f)}{p_t(t_f)} \]

Lateshift:

\[r^{\text{hard}}(0) = r^{\text{soft}}(0) = 0 \]
Observables: Redshift and Lateshift

Two remaining equations of interest

\[H(t, p_t, w) = 0 \iff p_t(t, w) \]

\[r'(t) = \frac{dr}{dt} = \frac{\dot{r}}{t} = \frac{1}{w} \chi^2 p_r \frac{\partial w H}{\partial t} \]

Redshift:

\[z(t_i, t_f) = \frac{p_t(t_i) - p_t(t_f)}{p_t(t_f)} \]

Lateshift:

\[r^{\text{hard}}(0) = r^{\text{soft}}(0) = 0 \]

\[R = r^{\text{hard}}(t^{\text{hard}}) = r^{\text{soft}}(t^{\text{soft}}) \]

\[\Delta t = t^{\text{hard}} - t^{\text{soft}} \]
Observables: Redshift and Lateshift

Two remaining equations of interest

\[H(t, p_t, w) = 0 \iff p_t(t, w) \]

\[r'(t) = \frac{dr}{dt} = \frac{\dot{r}}{t} = \frac{1}{w} \chi^2 p_r \frac{\partial w H}{\partial t} \]

\[H_{qFLRW} = -\frac{4}{\ell^2} \sinh \left(\frac{\ell}{2} p_t \right)^2 + a(t)^{-2} e^{\ell p_t w^2} \]

Redshift:

\[z(t_i, t_f) = - \frac{\ell p_t(t_i)}{\ln \left(1 - \frac{a(t_i)}{a(t_f)} (1 - e^{-\ell p_t(t_i)}) \right)} - 1 \]

\[= \left(\frac{a(t_f)}{a(t_i)} - 1 \right) \left(1 + \frac{\ell}{2} p_t(t_i) \right) + O(\ell^2) \]

Lateshift:

\[\Delta t \big|_{a(t) = e^{ht}} = t^{\text{hard}} - t^{\text{soft}} \]

\[= -\frac{\ell}{\hbar} p_t(t^{\text{hard}}) \left(z + \frac{z^2}{2} \right) \]
Observables: Redshift and Lateshift

Two remaining equations of interest:

\[
H(t, p_t, w) = 0 \iff p_t(t, w) \quad r'(t) = \frac{dr}{dt} = \frac{\dot{r}}{t} = \frac{1}{w} \chi^2 p_r \frac{\partial_w H}{\partial_t} \\
H_{qFLRW} = -\frac{4}{\ell^2} \sinh \left(\frac{\ell}{2} p_t \right)^2 + a(t)^{-2} e^{\ell p_t} w^2
\]

Redshift:

\[
z(t_i, t_f) = -\frac{\ell p_t(t_i)}{\ln \left(\frac{1 - \frac{a(t_i)}{a(t_f)} (1 - e^{-\ell p_t(t_i)})}{1 - \frac{a(t_i)}{a(t_f)}} \right)} - 1
\]

Lateshift:

Photons of high energy are slower than low energetic photons due to their stronger interaction with the quantum nature of gravity.

\[
\Delta t |_{a(t) = e^{ht}} = t^{\text{hard}} - t^{\text{soft}} = -\frac{\ell}{\hbar} p_t(t^{\text{hard}}) \left(z + \frac{z^2}{2} \right)
\]
Observables: Redshift and Lateshift

Two remaining equations of interest

\[
H(t, p_t, w) = 0 \Leftrightarrow p_t(t, w) \\
r'(t) = \frac{dr}{dt} = \frac{\dot{r}}{t} = \frac{1}{w} \chi^2 p_r \frac{\partial w H}{\partial t}
\]

\[
H_{qFLRW} = -\frac{4}{\ell^2} \sinh \left(\frac{\ell}{2} p_t \right)^2 + a(t)^{-2} e^{\ell p_t} w^2
\]

Redshift:

\[
z(t_i, t_f) = -\frac{\ell p_t(t_i)}{\ln \left(\frac{a(t_f)}{a(t_i)} \left(1 - e^{-\ell p_t(t_i)} \right) \right)} - 1
\]

Lateshift:

Photons of high energy are slower than low energetic photons due to their stronger interaction with the quantum nature of gravity.

4-momentum dependent spacetime geometry

\[
\Delta t|_{a(t) = e^{ht}} = t^{hard} - t^{soft}
\]

\[
= -\frac{\ell}{\hbar} p_t(t^{hard}) \left(z + \frac{z^2}{2} \right)
\]
Lateshift from Ice Cube Data

9 GRB-neutrino candidates
Blue: Late neutrinos
Black: Early Neutrinos

11 Photon candidates
for energy dependent time of arrival

Lateshift with respect to a particle not subject to modified dispersion relation

Graphics:

“In-vacuo-dispersion features for GRB neutrinos and photons”
Amelino-Camelia, D’Amico, Rosati, Loret; Nature Astronomy 1 (2017)
arXiv:1612.02765
Lateshift from Ice Cube Data

Photons and Neutrinos combined

Lateshift with respect to a particle not subject to modified dispersion relation

Graphics:

“In-vacuo-dispersion features for GRB neutrinos and photons”
Amelino-Camelia, D’Amico, Rosati, Loret; Nature Astronomy 1 (2017)
arXiv:1612.02765
1. Quantum Gravity Phenomenology

2. Dispersion Relations as Hamilton Functions

3. Symmetric Dispersion Relations

4. Observables: Cosmology

5. Observables: Spherical Symmetry

6. Conclusion and Outlook
The most general static spherically symmetric Hamiltonian

\[H(x, p) = H(x, r, p_t, p_r, w), \quad w^2 = p_{\theta}^2 + \frac{1}{\sin \theta^2} p_{\phi}^2 \]
Particle Dynamics

The most general static spherically symmetric Hamiltonian

\[H(x, p) = H(\mathbf{x}, r, p_t, p_r, w), \quad w^2 = p_\theta^2 + \frac{1}{\sin \theta^2} p_\phi^2 \]

Hamilton equations of motion for circular curves: \((t(\tau), r = R, \Theta = \frac{\pi}{2}, \phi(\tau))\)

\[
\begin{align*}
\dot{p}_t &= 0 \\
\dot{p}_r &= -\partial_r H \\
\dot{p}_\theta &= 0 \\
\dot{p}_\phi &= 0 \\
\dot{t} &= \bar{\partial}_t H \\
\dot{r} &= 0 \\
\dot{\theta} &= 0 \\
\dot{\phi} &= \bar{\partial}_\phi H
\end{align*}
\]

Constant of motion

\[E = p_t, \quad \mathcal{L} = p_\phi = w \]
Particle Dynamics

The most general static spherically symmetric Hamiltonian

\[H(\mathbf{x}, p) = H(\mathbf{x}, r, p_t, p_r, w), \quad w^2 = p_\theta^2 + \frac{1}{\sin \theta^2} p_\phi^2 \]

Hamilton equations of motion for circular curves: \((t(\tau), r = R, \Theta = \frac{\pi}{2}, \phi(\tau))\)

\[
\begin{align*}
\dot{p}_t &= 0 & \dot{t} &= \bar{\partial}_t H \\
\dot{p}_r &= -\partial_r H & \dot{r} &= 0 \\
\dot{p}_\theta &= 0 & \dot{\theta} &= 0 \\
\dot{p}_\phi &= 0 & \dot{\phi} &= \bar{\partial}_\phi H
\end{align*}
\]

Constant of motion

\[E = p_t, \quad \mathcal{L} = p_\phi = w \]

Three remaining equations of interest

\[H(r, p_t, p_r, w) = 0 \]

\[
\begin{align*}
\dot{p}_r &= -\partial_r H & 0 &= \dot{r} = \bar{\partial}_r H
\end{align*}
\]
Three remaining equations of interest
\[H(r, p_t, p_r, w) = 0 \]
\[\dot{p}_r = -\partial_r H \]
\[0 = \dot{r} = \bar{\partial}_r H \]

Innermost Circular Photon Orbits:

Strategy:

1.) \[0 = \bar{\partial}_r H \Rightarrow p_r(R, E, \mathcal{L}) \]

2.) \[0 = -\bar{\partial}_r H \Rightarrow R(E, \mathcal{L}) \]
Three remaining equations of interest

\[H(r, p_t, p_r, w) = 0 \]

\[\dot{p}_r = -\partial_r H \]

\[0 = \dot{r} = \bar{\partial}_r H \]

Innermost Circular Photon Orbits:

Strategy:

1.) \(0 = \bar{\partial}_r H \Rightarrow p_r(R, E, L) \)

2.) \(0 = -\bar{\partial}_r H \Rightarrow R(E, \mathcal{L}) \)

\(\kappa \)-Poincaré Schwarzschild Hamiltonian:

\[
H(x, p) = -\frac{4}{\ell^2} \sinh \left(\frac{\ell}{2} \frac{p_t}{\sqrt{1 - \frac{r_s}{r}}} \right)^2 + e \sqrt{1 - \frac{r_s}{r}} \left(\left(1 - \frac{r_s}{r}\right)p_r^2 + \frac{1}{r^2} \omega^2 \right)
\]
Three remaining equations of interest

\[H(r, p_t, p_r, w) = 0 \]

\[\dot{p}_r = -\partial_r H \quad 0 = \dot{r} = \bar{\partial}_r H \]

Innermost Circular Photon Orbits:

Strategy:

1. \[0 = \bar{\partial}_r H \Rightarrow p_r(R, E, \mathcal{L}) \]
2. \[0 = -\bar{\partial}_r H \Rightarrow R(E, \mathcal{L}) \]

κ-Poincaré Schwarzschild Hamiltonian:

\[H(x, p) = -\frac{4}{\ell^2} \sinh \left(\frac{\ell}{2} \frac{p_t}{\sqrt{1 - \frac{r_s}{r}}} \right)^2 + e \sqrt{\frac{\ell p_t}{r}} \left((1 - \frac{r_s}{r}) p_r^2 + \frac{1}{r^2} w^2 \right) \]

\[r_m=0 = \frac{3}{2} r_s + \frac{\ell w}{6} \]
Three remaining equations of interest

\[H(r, p_t, p_r, w) = 0 \]

\[\dot{p}_r = -\partial_r H \quad \quad 0 = \dot{r} = \partial_r H \]

Innermost Circular Photon Orbits:

Strategy:

1. \(0 = \partial_r H \Rightarrow p_r(R, E, \mathcal{L}) \)

Photons of larger angular momentum orbit a black hole at larger distance

4-momentum dependent spacetime geometry

\[H(x, p) = -\frac{4}{\ell^2} \sinh \left(\frac{\ell}{2} \frac{p_t}{\sqrt{1 - \frac{r_s}{r}}} \right) + e^{\sqrt{1 - \frac{r_s}{r}}} \left((1 - \frac{r_s}{r})p_r^2 + \frac{1}{r^2}w^2 \right) \]

\[r_{m=0} = \frac{3}{2} r_s + \ell \frac{w}{6} \]
1. Quantum Gravity Phenomenology

2. Dispersion Relations as Hamilton Functions

3. Symmetric Dispersion Relations

4. Observables: Cosmology

5. Observables: Spherical Symmetry

6. Conclusion and Outlook
The Idea: The higher the probe particle energy, the higher the influence of the quantum nature of gravity.
The Idea: The higher the probe particle energy the higher the influence of the quantum nature of gravity

The covariant dispersion on a curved spacetime:
- Level set of a Hamilton function $H(x,p)$ on phase space
- determines the 4-momentum dependent curved geometry of momentum space and spacetime (Hamilton geometry)
The Idea: The higher the probe particle energy, the higher the influence of the quantum nature of gravity.

The covariant dispersion on a curved spacetime:
- Level set of a Hamilton function $H(x,p)$ on phase space
- Determines the 4-momentum dependent curved geometry of momentum space and spacetime (Hamilton geometry)

The generalisation of the Killing equation determines spacetime symmetric Hamiltonians.
The Idea: The higher the probe particle energy the higher the influence of the quantum nature of gravity

The covariant dispersion on a curved spacetime:
- Level set of a Hamilton function $H(x,p)$ on phase space
- determines the 4-momentum dependent curved geometry of momentum space and spacetime (Hamilton geometry)

The generalisation of the Killing equation determines spacetime symmetric Hamiltonians

Lateshift: Photons of high energy are slower than low energetic photons due to their stronger interaction with the quantum nature of gravity.
Summary

The Idea: The higher the probe particle energy the higher the influence of the quantum nature of gravity.

The covariant dispersion on a curved spacetime:
- Level set of a Hamilton function $H(x,p)$ on phase space
- Determines the 4-momentum dependent curved geometry of momentum space and spacetime (Hamilton geometry)

The generalisation of the Killing equation determines spacetime symmetric Hamiltonians.

Late-shift: Photons of high energy are slower than low energetic photons due to their stronger interaction with the quantum nature of gravity.

Photon Orbits: Photons of larger angular momentum orbit a black hole at larger distance.
Modell independent first order perturbation of GR

\[H(x, p) = g^{ab}(x)p_ap_b + \epsilon h(x, p) \]

The locally \(\kappa \)-Poincaré Hamilton

\[H_{Zg} = -\frac{4}{\ell^2} \sinh \left(\frac{\ell}{2} Z(P) \right)^2 + e^{\ell Z(P)} \left(g^{-1}(P, P) + Z(P)^2 \right) \]
Outlook

Modell independent first order perturbation of GR

\[H(x, p) = g^{ab}(x)p_ap_b + \epsilon h(x, p) \]

The locally \(\kappa \)-Poincaré Hamilton

\[H_{Zg} = -\frac{4}{\ell^2} \sinh \left(\frac{\ell}{2} Z(P) \right)^2 + e^{\ell Z(p)} \left(g^{-1}(P, P) + Z(P)^2 \right) \]

Phenomenology

- redshift/lateshift
- lensing
- horizons/thermodynamics of black holes
- rotation curves of galaxies
- classical tests of special relativity: Michelson-Moreley, Kennedy-Thorndike, Ives-Stilwell
Outlook

Modell independent first order perturbation of GR

\[H(x, p) = g^{ab}(x) p_a p_b + \epsilon h(x, p) \]

The locally κ-Poincaré Hamilton

\[H_{Zg} = -\frac{4}{\ell^2} \sinh \left(\frac{\ell}{2} Z(P) \right)^2 + e^{\ell Z(p)} \left(g^{-1}(P, P) + Z(P)^2 \right) \]

Phenomenology

- redshift/latenshift
- lensing
- horizons/thermodynamics of black holes
- rotation curves of galaxies
- classical tests of special relativity:
 Michelson-Moreley, Kennedy-Thorndike, Ives-Stilwell

Mathematics

- Hopf Algebra symmetries of modified dispersion relations
- singularity theorems

Curved Spacetimes with local κ-Poincaré symmetry arXiv: 1703.02058
Planck-scale-modified dispersion relations in homogeneous and isotropic spacetimes arXiv: 1612.01390
Thank you for your attention

Phenomenology
• redshift/lateshift
• lensing
• horizons/thermodynamics of black holes
• rotation curves of galaxies
• classical tests of special relativity:
 Michelson-Moreley, Kennedy-Thorndike, Ives-Stilwell

Mathematics
• Hopf Algebra symmetries of modified dispersion relations
• singularity theorems

Covariant dispersion on a curved spacetime:
- Level set of a Hamilton function $H(x,p)$
- the 4-momentum dependent geometry of momentum space and spacetime

Curved Spacetimes with local κ-Poincaré symmetry arXiv: 1703.02058
Planck-scale-modified dispersion relations in homogeneous and isotropic spacetimes arXiv: 1612.01390